Discovery and Exclusion Potential of Future Colliders for Supersymmetry Signatures

Electroweakinos with compressed mass spectra Electroweakinos with fully hadronic final states R-parity Violating signatures with 2 or 3 leptons

Evelyn Thomson, Jeff Dandoy
Elliot Lipeles, Joe Kroll, Brig Williams, Shion Chen,
Jeff Shahinian

Letter of Intent to EF0, EF8, RF4

October 2 2020 RF04 Townhall

SUSY: Cosmo & Pheno hinges on R-parity = $(-1)^{3(B-L)+2s}$

* Stable DM

Question assumptions: do you prevent proton decay with

 a new quantum number called R-Parity?

RPC & LSP stable as DM

 a new U(1) gauge symmetry with B-L charge?

RPV & LSP decays to SM

Figure from S. Spinner

Physics Motivation

Motivation: RPV searches for supersymmetry of active interest at LHC, but under-represented in studies at future colliders

Goal: compare discovery and exclusion potential for two searches performed by our group on ATLAS at future hadron and lepton colliders

- More data at HL-LHC
- Higher center-of-mass energy at HE-LHC and FCC-hh
- Cleaner environment at lepton colliders ILC, CLIC, LE-FCC

Model: MSSM with RH neutrinos and U(1) B-L charge, broken by RH sneutrino. Significant difference is LSP can decay via tiny RPV couplings related to neutrino masses,

(1) Scalar top LSP with RPV decay giving a lepton-b-jet resonance

- Requirements: lepton identification, jets, b-tagging
- Dominant backgrounds: ttbar, single top (Wt), Z+jets
 needed at high total transverse energy

(2) Electroweakino LSP with RPV decay giving a trilepton resonance

- Requirements: lepton identification
- Dominant backgrounds WZ, ZZ, ttZ

 \sqrt{s} = 13 TeV, 36.1 fb⁻¹

0.6

Observed 95% CL mass limit

1350 1300

-1250 **-**1200

-1150 -1100 -1050

-1000

900

 $\rightarrow b\tau$

0.6 -

0.4

0.2 -

Muons

0.2

Two lepton-b-jet resonances directly reconstruct stop mass Limits depend on stop BR to each lepton flavor

Trilepton mass (GeV)

Trilepton mass (GeV)

RPV Electroweakino search

Limits depend on BR for chargino decay to Z and lepton (y-axis), and lepton flavor (inclusive)

